New

My LiberPagesCreate / Edit

The red planet
(1)

by Frances Core
rating rating rating rating rating
quality quality quality quality quality

Short description:

Mars is the fourth planet from the Sun and the second smallest planet in the Solar System. Named after the Roman god of war, it is often described as the "Red Planet", as the iron oxide prevalent on its surface gives it a reddish appearance.[14] Mars is a terrestrial planet with a thin atmosphere, having surface features reminiscent both of the impact craters of the Moon and the volcanoes, valleys, deserts, and polar ice caps of Earth. The rotational period and seasonal cycles of Mars are likewise similar to those of Earth, as is the tilt that produces the seasons. (Demonstration document)

Physical characteristics

Mars has approximately half the diameter of Earth. It is less dense than Earth, having about 15% of Earth's volume and 11% of the mass. Its surface area is only slightly less than the total area of Earth's dry land.[6] While Mars is larger and more massive than Mercury, Mercury has a higher density. This results in the two planets having a nearly identical gravitational pull at the surface—that of Mars is stronger by less than 1%. The red-orange appearance of the Martian surface is caused by iron(III) oxide, more commonly known as hematite, or rust.[25] It can also look butterscotch,[26] and other common surface colors include golden, brown, tan, and greenish, depending on minerals.[26]
Internal structure

Like Earth, this planet has undergone differentiation, resulting in a dense, metallic core region overlaid by less dense materials.[27] Current models of the planet's interior imply a core region about 1,794 km (1,115 mi) ± 65 km (40 mi) in radius, consisting primarily of iron and nickel with about 16–17% sulfur.[28] This iron sulfide core is partially fluid, and has twice the concentration of the lighter elements that exist at Earth's core. The core is surrounded by a silicate mantle that formed many of the tectonic and volcanic features on the planet, but now appears to be dormant. Besides silicon and oxygen, the most abundant elements in the martian crust are iron, magnesium, aluminum, calcium, and potassium. The average thickness of the planet's crust is about 50 km (31 mi), with a maximum thickness of 125 km (78 mi).[29] Earth's crust, averaging 40 km (25 mi), is only one third as thick as Mars's crust, relative to the sizes of the two planets. The InSight lander planned for 2016 will use a seismometer to better constrain the models of the interior.

Surface geology

Global mosaic of Mars from data gathered by the Viking 1 orbiter in 1980, showing Valles Marineris (center)

Mars is a terrestrial planet that consists of minerals containing silicon and oxygen, metals, and other elements that typically make up rock. The surface of Mars is primarily composed of tholeiitic basalt,[30] although parts are more silica-rich than typical basalt and may be similar to andesitic rocks on Earth or silica glass. Regions of low albedo show concentrations of plagioclase feldspar, with northern low albedo regions displaying higher than normal concentrations of sheet silicates and high-silicon glass. Parts of the southern highlands include detectable amounts of high-calcium pyroxenes. Localized concentrations of hematite and olivine have also been found.[31] Much of the surface is deeply covered by finely grained iron(III) oxide dust.

Although Mars has no evidence of a current structured global magnetic field,[34] observations show that parts of the planet's crust have been magnetized, and that alternating polarity reversals of its dipole field have occurred in the past. This paleomagnetism of magnetically susceptible minerals has properties that are very similar to the alternating bands found on the ocean floors of Earth. One theory, published in 1999 and re-examined in October 2005 (with the help of the Mars Global Surveyor), is that these bands demonstrate plate tectonics on Mars four billion years ago, before the planetary dynamo ceased to function and the planet's magnetic field faded away.

During the Solar System's formation, Mars was created as the result of a stochastic process of run-away accretion out of the protoplanetary disk that orbited the Sun. Mars has many distinctive chemical features caused by its position in the Solar System. Elements with comparatively low boiling points such as chlorine, phosphorus and sulphur are much more common on Mars than Earth; these elements were probably removed from areas closer to the Sun by the young star's energetic solar wind.

After the formation of the planets, all were subjected to the so-called "Late Heavy Bombardment". About 60% of the surface of Mars shows a record of impacts from that era,[37][38][39] while much of the remaining surface is probably underlain by immense impact basins caused by those events. There is evidence of an enormous impact basin in the northern hemisphere of Mars, spanning 10,600 km by 8,500 km, or roughly four times larger than the Moon's South Pole – Aitken basin, the largest impact basin yet discovered.This theory suggests that Mars was struck by a Pluto-sized body about four billion years ago. The event, thought to be the cause of the Martian hemispheric dichotomy, created the smooth Borealis basin that covers 40% of the planet.
 

Hydrology

Microscopic photo taken by Opportunity showing a gray hematite concretion, indicative of the past presence of liquid water

Liquid water cannot exist on the surface of Mars due to low atmospheric pressure, except at the lowest elevations for short periods. The two polar ice caps appear to be made largely of water. The volume of water ice in the south polar ice cap, if melted, would be sufficient to cover the entire planetary surface to a depth of 11 meters. A permafrost mantle stretches from the pole to latitudes of about 60°.

Large quantities of water ice are thought to be trapped within the thick cryosphere of Mars. Radar data from Mars Express and the Mars Reconnaissance Orbiter show large quantities of water ice both at the poles (July 2005) and at mid-latitudes (November 2008).[19] The Phoenix lander directly sampled water ice in shallow Martian soil on July 31, 2008.

Landforms visible on Mars strongly suggest that liquid water has at least at times existed on the planet's surface. Huge linear swathes of scoured ground, known as outflow channels, cut across the surface in around 25 places. These are thought to record erosion which occurred during the catastrophic release of water from subsurface aquifers, though some of these structures have also been hypothesised to result from the action of glaciers or lava.[58][59] One of the larger examples, Ma'adim Vallis is 700 km long and much bigger than the Grand Canyon with a width of 20 km and a depth of 2 km in some places. It is thought to have been carved by flowing water early in Mars's history. The youngest of these channels are thought to have formed as recently as only a few million years ago.[61] Elsewhere, particularly on the oldest areas of the martian surface, finer-scale, dendritic networks of valleys are spread across significant proportions of the landscape. Features of these valleys and their distribution very strongly imply that they were carved by runoff resulting from rain or snow fall in early Mars history. Subsurface water flow and groundwater sapping may play important subsidiary roles in some networks, but precipitation was probably the root cause of the incision in almost all cases.

There are also thousands of features along crater and canyon walls that appear similar to terrestrial gullies. The gullies tend to be in the highlands of the southern hemisphere and to face the Equator; all are poleward of 30° latitude. A number of authors have suggested that their formation process demands the involvement of liquid water, probably from melting ice,although others have argued for formation mechanisms involving carbon dioxide frost or the movement of dry dust.No partially degraded gullies have formed by weathering and no superimposed impact craters have been observed, indicating that these are very young features, possibly even active today.
 

Final Remarks

Excerpts and images from Wikipedia (for demo only)